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1 Spectral Clustering

1.1 Graph Laplacians

Spectral clustering is a clustering algorithm which is far more expressive than k-means, and is not
limited to convex clusters.

Definition 1.1 (Undirected weighted graph). A weighted graph is an undirected graph G = (V,E)
where V = {v1, . . . , vn} and each to vertices vi, vj are connected with an edge with non-negative weight
wij ≥ 0. We denote the weight matrix as W .

Remark 1.2. When data lies in Euclidean space and the weights are not given, it is a common practice
to use Gaussian kernel to compute the weights

wij =
exp

(
−∥xi − xj∥2

)
2σ2

,

for such bandwidth parameter σ.

Remark 1.3. A common practice is to connect each point only to its k nearest neighbors, which is known
as knn graph. The graph can be easily made symmetric, for example by using W ← 1

2

(
W +WT

)
.

Definition 1.4 (Degree and Degree matrix). The degree di of a vertex vi and the graph degree matrix
D are defined as

• di is the sum of weights on the edges of vi, i.e., di =
∑

j wij.

• D is a diagonal matrix with elements Dii = di.

Definition 1.5 (Unnormalized graph Laplacian). The unnormalized graph Laplacian is defined as Lun =
D −W .

Observe that Lun is symmetric.

Proposition 1.6. For every vector f ∈ Rn, fTLunf =
∑

i,j wij (fi − fj)2.

Proof. Exercise.

It follows that Lun is positive semi-definite

Proposition 1.7. The smallest eigenvalue of of Lun is 0, and its corresponding eigenvector is the
constant vector 1√

n
1.
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Proof. Let f = 1√
n
1. Then by proposition 1.6

fTLunf = 0,

hence f, 0 are an eigenpair.

Proposition 1.8. The multiplicity of the zero eigenvalue equals the number k of connected components
of G, and the corresponding eigenvectors are indicator vectors of the components.

Proof. We know that 0 is an eigenvalue. Let f be a corresponding eigenvector. Then since fTLunf = 0,
we have that fi = fj whenever wij > 0. For k > 1 connected components, Lun is block diagonal, so its
spectrum is the union of the spectra of all blocks.

Definition 1.9 (Normalized graph Laplacian). We define two versions of normalized Laplacians:

• The random walk graph Laplacian is Lrw = D−1Lun = I −D−1W .

• The Symmetric graph Laplacian is Lsym = D− 1
2LunD

− 1
2 = I −D− 1

2WD− 1
2 .

Remark 1.10. Observe that Lrw and Lsym are similar matrices, and hence share the same spectrum.
In particular, all eigenvalues of Lrw are real.

Proposition 1.11. Lsym is positive semi-definite (and hence also Lrw)

Proof. Exercise.

Proposition 1.12. 0 is an eigenvalue of Lrw (and hence also of Lsym), associated with the constant
eigenvector.

Proof. Exercise.

Proposition 1.13. The multiplicity of the zero eigenvalue in Lrw and Lsym equals the number k of
connected components of G, and the corresponding eigenvectors are indicator vectors of the components.

Proof. Analogous to the proof of proposition 1.8.

1.2 Spectral Clustering

We have seen that eigenvectors corresponding to the zero eigenvalues (to whom we refer from now the
first eigenvectors) of the Laplacian indicate the connected components. It therefore makes sense to use
these eigenvectors to represent the data and identify the cluster structure.

Spectral clustering works by representing the data using the first k eigenvectors, and running k-
means on this representation. Unlike k-means it can handle non-convex data (see Figure 1. Spectral
clustering can interestingly be motivated by a graph cut point of view (see section 5 in Von Luxburg’s
excellent tutorial).

Remark 1.14. Since the first eigenvector is constant in Lun and Lrw, it is often omitted.

Further Reading

A excellent spectral clustering tutorial is https://link.springer.com/content/pdf/10.1007/s11222-007-9033-z.
pdf.
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Figure 1: Spectral clustering (top) versus k-means on non-convex clusters.

2 Diffusion Maps

Diffusion map is a dimensionality reduction technique, that captures geometrical properties of data. In
order to do so, it utilizes weighted graphs, which encode local similarity between pairs of points. This
local interaction then allows to obtain global representations of the entire data.

Observe that P := D−1W is a Markov matrix, and hence encodes transition probabilities between
the vertices. P is a diffusion (averaging) operator, and defines directions of propagation. powers of P
corresponds to multi-step walks.

Proposition 2.1. P has stationary distribution π, with πi =
di∑
j dj

, i.e., πTP = πT .

Proof. Exercise.

Corollary 2.2. a stationary distribution π is a left eigenvector of P , with eigenvalue 1. Since left and
right eigenvalues are the same, P as a 1 eigenvalue.

Corollary 2.3. Let u be an arbitrary vector of length n. Each entry of Pu is a convex combination of
the entries of u. and hence cannot be larger than the maximal one. Therefore any eigenvalue of P can
be at most 1.

Let 1 = λ0 ≥ λ1 ≥ . . . and ψ0, ψ1, . . . be the eigenvalues and eigenvectors of P (exercise: why
λ0 = 1?)

Definition 2.4 (Diffusion distance). The diffusion distance at time t between vertices vi and vj is
defined as:

Dt(vi, vj) = ∥P t
i − P t

j ∥2ℓ2/d =

n∑
k=1

(Pik − Pjk)
2/dk,

where P t
i is the i’th row of P t.

Remark 2.5. The notation ∥x∥2ℓ2/d means that the length is
√∑

i x
2
i /di.
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Intuitively, if vi and vj are connected by a large number of paths, their diffusion probabilities will
be similar, and hence their diffusion distance will be small.

The following theorem shows that the diffusion distance squared is in fact the Euclidean distance in
the eigenspace of P

Theorem 2.6.

Dt(vi, vj) =

(
n∑

l=1

λ2tl (ψl,i − ψl,j)
2

) 1
2

,

where ψ1, . . . ψn are the eigenvectors of P .

Proposition 2.7. Let P = D−1W and A = D− 1
2WD− 1

2 . Let (λ, ϕ) be an eigenpair of A. Then

(λ,D− 1
2ϕ) are an eigenpair of P .

Proof. Exercise.

Proof. Consider A = D− 1
2WD− 1

2 . We already know that P has real eigenvalues (since P is similar to
A, and A is symmetric). Let A =

∑
λlϕlϕ

T
l . Then

P = D− 1
2AD

1
2

=
∑
l

λlD
− 1

2ϕlϕ
T
l D

1
2 (1)

The vectors D
1
2ϕl, l = 1, . . . ...n are orthogonal in ∥ · ∥ℓ2/d. This means that we can view the i’th row

of P as an expansion in that basis with coefficients λlD
− 1

2ϕli := λlψli. Consequently,

∥Pi − Pj∥2ℓ2/d =
∑
l

λ2 (ψli − ψlj)
2
.

Analogously, for P t we have

∥P t
i − P t

j ∥2ℓ2/d =
∑
l

λ2t (ψli − ψlj)
2
.

2.1 Representation

The above suggests that we can represent a node vi using a feature vector

Ψt(vi) =
(
λt1ψ

t
1,i, . . . , λ

t
1ψ

t
L,i

)T
,

for some L ≤ n.
Recall that by proposition 1.11, Lsym is positive semi-definite. This implies that the entire spectrum

of Lrw lies between 1 and 0, and consequently also the spectrum of P . Since the spectrum decays, for
each t only few eigenvalues λt have significant effect on the diffusion distances, which means that we
can use dimensionality L such that λtL is sufficiently small, and achieve dimensionality reduction.
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